cscx和cotx的关系与转化公式
时间:
admin
数学
csc²x=1+cot²x。余割与正弦的比值表达式互为倒数。csc²x=1/sin²x=(sin²x+cos²x)/sin²x=1+cos²x/sin²x。
三角函数之间的关系
(1) 平方关系:
(sinx)^2+(cosx)^2=1
1+(tanx)^2=(secx)^2
1+(cotx)^2=(cscx)^2
(2) 倒数关系:
sinx.cscx=1
cosx.secx=1
tanx.cotx=1
(3)商的关系
sinx/cosx=tanx
tanx/secx=sinx
cotx/cscx=cosx
sinx的导数是cosx(其中X是常数)
余割函数
余割为一个角的顶点和该角终边上另一个任意点之间的距离除以该任意点的非零纵坐标所得之商,这个角的顶点与平面直角坐标系的原点重合,而其始边则与正X轴重合。
在直角三角形中,斜边与某个锐角的对边的比值叫做该锐角的余割.记作cscx。
余割与正弦的比值表达式互为倒数。
余割函数为奇函数,且为周期函数。
余割函数记为:y=cscx。
余切函数
在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。余切与正切互为倒数,用“cot+角度”表示。余切函数的图象由一些隔离的分支组成(如图)。余切函数是无界函数,可取一切实数值,也是奇函数和周期函数,其最小正周期是π。